<p>La presente investigación muestra cómo estudiantes de enseñanza media primer y segundo año manifiestan de manera informal e instintiva, algunas de las propiedades del objeto matemático: “relaciones de equivalencias y particiones”, enfrentados ante situaciones cotidianas, sin tener un conocimiento previo de dichas nociones al menos de forma explícita. Como parte de la verificación de estas nociones; se establece un posible camino de construcción cognitiva y para eso la teoría APOE(Acciones, Procesos, Objetos y Esquemas) desarrollada por E. Dubisnky, basada en las ideas de abstracción reflexiva de J. Piaget resulta apropiada; en primer lugar por su carácter tanto epistemológico como psicológico y en segundo lugar, porque permite elaborar, a través de una Descomposición Genética Provisoria (DGP), un modelo viable de las nociones reveladas. Con base en lo anterior, se estableció como diseño metodológico el estudio de caso. Se elaboró una DGP, a partir del análisis teórico propuesto en el ciclo de investigación que este marco proporciona, el cual incluye, dentro de otros: un análisis histórico epistemológico; que da cuenta de la relevancia que han tenido las relaciones de equivalencia y particiones; y las nociones que la subyacen en el desarrollo de la matemática y la historia humana en general. Se realizó también un análisis curricular, con un enfoque especial a las bases curriculares de la Educación Parvularia, considerando que es ahí donde comienzan los primeros vínculos formales con las nociones asociadas a los objetos en estudio. Se realizó además la aplicación y análisis de una actividad grupal exploratoria y de una entrevista individual semiestructurada. Los resultados del estudio, permiten constatar y modelar la mayoría de las propiedades involucradas en los conceptos de relación de equivalencia y partición. Los estudiantes las manifiestan y utilizan de forma similar a alguien con dominio de los objetos matemáticos</p>
last modification
Magíster en Didáctica de la Matemática
MAGISTER EN DIDACTICA DE LA MATEMATICA
<p>La presente investigación muestra cómo estudiantes de enseñanza media primer y segundo año manifiestan de manera informal e instintiva, algunas de las propiedades del objeto matemático: “relaciones de equivalencias y particiones”, enfrentados ante situaciones cotidianas, sin tener un conocimiento previo de dichas nociones al menos de forma explícita. Como parte de la verificación de estas nociones; se establece un posible camino de construcción cognitiva y para eso la teoría APOE(Acciones, Procesos, Objetos y Esquemas) desarrollada por E. Dubisnky, basada en las ideas de abstracción reflexiva de J. Piaget resulta apropiada; en primer lugar por su carácter tanto epistemológico como psicológico y en segundo lugar, porque permite elaborar, a través de una Descomposición Genética Provisoria (DGP), un modelo viable de las nociones reveladas. Con base en lo anterior, se estableció como diseño metodológico el estudio de caso. Se elaboró una DGP, a partir del análisis teórico propuesto en el ciclo de investigación que este marco proporciona, el cual incluye, dentro de otros: un análisis histórico epistemológico; que da cuenta de la relevancia que han tenido las relaciones de equivalencia y particiones; y las nociones que la subyacen en el desarrollo de la matemática y la historia humana en general. Se realizó también un análisis curricular, con un enfoque especial a las bases curriculares de la Educación Parvularia, considerando que es ahí donde comienzan los primeros vínculos formales con las nociones asociadas a los objetos en estudio. Se realizó además la aplicación y análisis de una actividad grupal exploratoria y de una entrevista individual semiestructurada. Los resultados del estudio, permiten constatar y modelar la mayoría de las propiedades involucradas en los conceptos de relación de equivalencia y partición. Los estudiantes las manifiestan y utilizan de forma similar a alguien con dominio de los objetos matemáticos</p>